

Electrical data

Voltage Transducer CV 4-4000/SP1

For the electronic measurement of voltages: DC, AC, pulsed..., with galvanic isolation between the primary circuit and the secondary circuit.

U_{PN}	Primary nominal RMS voltage	2800	V
$U_{\rm PM}$	Primary voltage, measuring range	0 ±4000	V
U_{S}	Secondary voltage	10	V
S	Sensitivity	4000 V / 10 V	
R_{L}	Load resistance	≥ 2	kΩ
C_{L}	Load capacitance	≤ 5	nF
$U_{\mathtt{C}}$	Supply voltage (±10 %)	±24	V
I_{C}	Current consumption @ $U_{\rm C}$ = ±24 V	$35 + U_{\mathrm{S}}/R_{\mathrm{L}}$	mΑ

Accuracy - Dynamic performance data

	Max	
Total error @ U_{PN} , T_{A} = 25 °C	±0.40	%
−40 °C +70 °C	±1.00	%
Offset current @ U_P = 0, T_A = 25 °C	±0.20	mA
−40 °C +70 °C	±0.60	mA
Delay time to 90 % of U_{PN}^{-1}	≈ 50	μs
Frequency bandwidth (–3 dB) @ 50 % U_{PN}	DC 6	kHz
	$-40~^{\circ}\text{C}~~+70~^{\circ}\text{C}$ Offset current @ U_{P} = 0, T_{A} = 25 $^{\circ}\text{C}$ $-40~^{\circ}\text{C}~~+70~^{\circ}\text{C}$ Delay time to 90 % of U_{PN}^{-1}	Total error @ $U_{\rm PN}$, $T_{\rm A}$ = 25 °C ± 0.40 -40 °C +70 °C ± 1.00 Offset current @ $U_{\rm P}$ = 0, $T_{\rm A}$ = 25 °C ± 0.20 -40 °C +70 °C ± 0.60 Delay time to 90 % of $U_{\rm PN}$ $^{1)}$ ≈ 50

Ge	no		\sim	9	
		101		71	

T_{A}	Ambient operating temperature	-40 +70	°C	
T_{S}	Ambient storage temperature	-50 +85	°C	
P_{P}	Total primary power loss @ $U_{\scriptscriptstyle \mathrm{PN}}$	2.8	W	
R_{P}	Resistance of primary (winding)	2.8	$M\Omega$	
m	Mass	750	g	
	Standards	EN 50178: 199	7	
		EN 50155: 200	7	
		EN 50121-3-2:	EN 50121-3-2: 2016 ²⁾	

Notes: 1) For a $dv/dt = 1000 \text{ V/}\mu\text{s}$.

Features

- Closed loop (compensated) voltage transducer
- Insulating plastic case recognized according to UL 94-V0.

Special features

- $U_{\rm c}$ = ±24 (±10 %) V
- $U_{d} = 9.5 \text{ kV}$
- $T_A = -40 \, ^{\circ}\text{C} \, ... \, +70 \, ^{\circ}\text{C}$
- Shield
- Connection to secondary circuit on SUB-D 9 Poles (male).

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

Application Domains

- Traction
- Industrial.

5March2019/version 8

 $^{^{\}rm 2)}$ Deviation of the offset during the test IEC 61000-4-3 between 100 to 300 MHz.

Voltage Transducer CV 4-4000/SP1

Insulation coordination			
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	9.5 1)	kV
U_{e}	Partial discharge extinction RMS voltage @ 10 pC	3.75 Min	kV
$d_{\rm Cp}$	Creepage distance	185.1	mm
d_{CI}	Clearance	118.5	mm
CTI	Comparative tracking index (group I)	600	

Note: 1) Between primary and secondary.

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
$d_{\mathrm{Cp}},d_{\mathrm{CI}},U_{\mathrm{Ni}}$	Rated insulation voltage	Nominal voltage
Basic insulation	8000 V	1000 V
Reinforced insulation	5600 V	1000 V

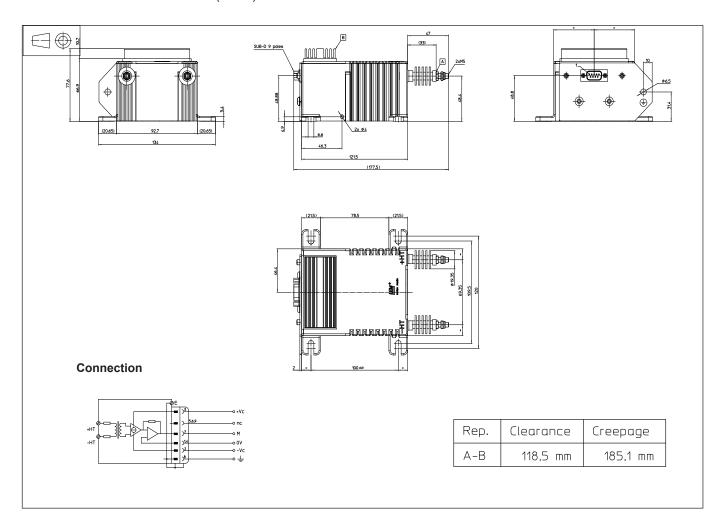
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (e.g. primary connections, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions CV 4-4000/SP1 (in mm)

Mechanical characteristics

General tolerance

Transducer fastening

Recommended fastening torque

Connection of primary

Recommended fastening torque 2.2 N·m

Connection of secondary

±0.5 mm

4 slots Ø 6.6 mm

4 M6 steel screws

5 N·m

M5 threaded studs

SUB-D 9 Poles (male)

Connection to the ground hole Ø 6.5 mm

Remarks

- $\bullet \ \ I_{\rm S}$ is positive when $U_{\rm P}$ is applied on terminal +HT.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. This application note is available on LEM website.